

Severe Aortic Stenosis and TAVR: An Update for 2016

David G. Skolnick, MD

Associate Professor University of Missouri Kansas City

Medtronic - speaker Edwards -TAVR education

Symptomatic Severe Aortic Stenosis

is a lethal disease

Braunwald. Circulation 1968.

Severe AS in the old days ...

Peak vel >4 m/s Grad >40 mmHg Area <1.0 cm²

Classic symptoms are late manifestations. Initial sx: DOE or ↓**exercise tolerance.**

Heart Disease and Stroke Statistics – 2015 Update

Unusual Case - Easy Decision

80 year old farmer with **HF**, syncope and angina.

Mean gradient - 43 mmHg AV Area - 0.4 cm²

Management of Aortic Stenosis

Asymptomatic pts with AS have outcomes similar to agematched adults. But progression with symptoms is common.

AVR is based largely on the presence or absence of *symptoms* attributed to severe AS and not on absolute valve area or gradient. (*EF 30% HF I or III*)

Symptoms may be subtle like reduced exercise tolerance or dyspnea on exertion. Pts may reduce activity to below symptoms threshold. Risk of sudden death is high once any symptoms develop – even mild ones.

Exercise testing in asymptomatic severe AS is safe and underutilized. May help to unmask symptoms!

Bonow. ACC/AHA Valvular Heart Disease Guidelines. JACC 2008:52:e1-142

Walks 2 miles/day - no symptoms!

75 yr old wants a 2nd opinion

Peak velocity – 5.5 m/s Mean gradient - 75 mmHg AV Area - 0.5 cm² 197 pts, No sx, valve <0.75 cm² plus vel >4.5 m/s or >50mmHg (Excluded pts with CAD, EF <50%, significant AI or MR, age >85)

Kang. Circulation 2010;121:1502-9

Is it Aortic Stenosis or Age?

75 male – followed in clinic for severe AS. He may be "slowing some" although attributes it to his age. Denies CP, dyspnea, or syncope. Continues to work out twice a week for at >1 hour on each occasion – jogging, rapid walking, cycles with a high tension and lifts weights. No symptoms.

Treadmill - 7 METS. Stops due to leg weakness, fatigue.

BP at rest - 167/62. **BP** with exercise - 130/60.

AS: Complex "systemic" disease

Hypertension which adds to total afterload. CAD which can impact ventricular function.

Pibarot and Dumesnil (review). JACC 2012;60:169-80

In 2016, it looks like this ...

Age > 80+ Tired / fatigue Heart failure (?) COPD / Renal

High gradient AS

Low flow, low gradient

Paradoxical low-flow

- Treadmill stress (IIa)
- Dobutamine echo (IIa) if EF <50%, AVA <1.0, and <4m/s or <40 mmHg

Transcatheter Aortic Valve Replacement

Demographic Trends

Nearly 3% of subjects >75 years have critical aortic stenosis.

Am Heart J 2012;163:477-85.

US Census Bureau 2010

TVT 2015: Freed 2010; Bach. Unoperated pts with severe AS. J Heart Valve Dis May 2011

Estimated Global TAVR Growth

Lancet 2015;385:2439-41. TVT 2015 – Source: Credit Suisse TAVI Comment 1/8/15

CE-Approved TAVR Systems

Low-Flow/Low-Gradient AS (\EF)

LVOT	Ao V
17 cm	62 cm
0.8 m/s	3.0 m/s
	23 mmHg

AV Area - 0.9 cm²

April 2012

Cardiac Output (I/min, assumes HR 75 bpm, SEP 300 ms)

JACCi 2013:6:184-95

Low-Flow/Low-Gradient AS (\EF)

	LVOT	Ao V		LVOT	Ao V
	28 cm	98 cm		17 cm	62 cm
	1.0 m/s	3.8 m/s		0.8 m/s	3.0 m/s
^		38 mmHg			23 mmHg
	Sept 2011	AV A	cm ²	April 2012	

Paradoxical low-flow severe AS

Chronic exposure to high afterload may eventually lead to intrinsic impairment of myocardial function.

Myocardial function and stroke volume are reduced despite a normal LVEF.

Severe low-gradient AS

JACC Img 2009;2:400-2

Pibarot and Dumesnil. JACC 2012;60:169-80

Predicting the Future

	Low	Intermediate	High Risk	Inoperable				
STS PROM	<4% and	4 to 8% or	>8% or	major morbidity or death >50% at 1 year				
Frailty Index	Frailty Index None and		≥2 indices mod-severe					
Feed, bath, dress, transfer, toilet, urinary continence, walk independently								
Major organs compromised	None and	1 organ system or	\leq 2 organ systems or	3 organ systems or				
Low EF, diastolic or RV dysfx, pulm HTN, CKD stage 3-5, FEV1 <50%, dementia, CVA, albumin <3.0, active malignancy, liver dz / cirrhosis.								
Anatomy	None	Possible	Possible	Severe				
Trach, porcelain	aorta, c	hest deformity,	grafts against	chest wall, radiation				

ACC/AHA Guidelines . Circulation. 2014;129.

PARTNER IB - Inoperable

N - 358. Edwards 23mm or 26mm bioprosthetic valve Age 83, male 45%, HF III-IV 92%, AVA 0.6 cm2, EF 52%

Lancet 2015;385:2485-91 NEJM 2010;363:1597-1607

PARTNER IB - HF Status

NEJM 2010;363:1597-1607 NEJM 2012;366:1696-1704

PARTNER IA - High Risk

N - 699. Randomized to TAVR (TF or TA) or SAVR Age 84, male 58%, HF III-IV 94%, EF 53%, Prior CABG 41%

FDA approved - Sept 2012

NEJM 2011; 364:2187-98 Lancet 2015;385:2477-84

PARTNER IA – HF Class

CoreValve - High surgical risk

Self-expanding system. N - 747. Randomized to TAVR (TF or TA) or SAVR Age 83, male 53%, HF III-IV 86%, Prior CABG 30%, DM 40%

NEJM 2014;370:1790-8.

5-Year Prosthesis Performance

3rd generation 18-F CoreValve device

JACC Intervention 2015;8;1084-91

30 day Outcomes

Trial	Ν	STS	I	Death		CVA		≥2+ AR	Vasc Injury	P	acer
Partner IB	179	11.2		5.0	ſ	6.7	ſ	11.8	16.2	Π	3.4
Partner 1A	348	11.8		3.4		4.7		12.2	11.0		3.8
Partner IIB	284	10.3		3.5		4.3		24.0	9.6		6.4
SAPIEN 3	150	7.4		5.3		2.7		3.5	5.3		13.3
SAPIEN 3 TF	96	7.5	1	2.1	ſ	1.0		3.5	4.2	1	12.5
Core - Extreme	489	10.3		8.4		4.0		15.3	5.9		21.6
Core - Pivotal	390	7.3		3.3		4.9		10.0	5.3		19.8
Evolut R	60	7.0		0		0		3.4	8.3		11.7

Euro PCR 2015.

JACC 2014;64;2244-5

Impact of Aortic Regurgitation

Predictors: calcification, valve malposition within annulus, undersized valve, CoreValve vs Sapien (21% vs 13%)*

Outcomes: AI > 2+ is an independent predictor of shortand long-term mortality. The mechanism is still unclear.

Partner IA. JACC 2013;61:1125-36

*France 2 Registry. CIRC 2014; 129:1415-1427

Role of Mitral Regurgitation

PARTNER 1A (high risk): ~ 20% pts had mod or severe MR

Moderate or severe MR was associated with a higher 2 year mortality with SAVR but not with TAVR. TAVR/SAVR: HF symptoms improved regardless of MR

Barbanti. Circ 2013;128:2776-84

Tricuspid Regurgitation

Mortality in Low Flow, Low Gradient, Low EFAS

TOPAS study: 220 pts, age 73, HF III-IV 50% 60% underwent AVR (80% surg - 20% TAVR)

JACC Intervention 2015;8:588-96

TAVR - low flow, low gradient

Retrospective analysis of 385 pts with inoperative or high risk symptomatic severe aortic stenosis.

Low EF-LG AS pts had more CAD, MI, MR. More likely to die of CV causes. Paradoxical LFLG pts - same benefit as HG. Typically 80 yr, 9, HTN, CAD.

O'Sullivan. Europ Heart J 2013;34:3437-50

Balloon Aortic Valvaloplasty

CoreValve Deployment

Edwards Valve Deployment

Lossy compression - not intended for diagnosis

LV Function During TAVR

Baseline

Rapid RV Pacing

Rapid Pacing for TAVR

PARTNER IA at 5 Years

Balloon-expandable valves versus SAVR

For pts with no or trace paravalvular regurgitation, **5 year mortality reduction for TF-TAVR compared to SAVR was ~16%** (45% vs. 61%), emphasizing the need to eliminate paravalvular regurgitation post-procedure.

Better outcomes with TAVR: women, those with smaller annular size and low-flow, low gradient AS.

Waksman and Pichard. JACC 2015;66:122-4.

Typical TAVR Patient

84 year old with class IV HF, EF 20%, valve area - 0.5 cm² mean gradient - 50 mmHg

Few months later, presents for TAVR: EF 15%, gradient 27 mmHg

Typical TAVR Patient

84 year old with class IV HF, EF 20%, valve area - 0.5 cm² mean gradient - 50 mmHg

Few months later, presents for TAVR: EF 15%, gradient 27 mmHg

Cardiac output doubled and diastolic dysfunction improved.

2014 ACC/AHA: Guidelines

ACC/AHA Valvular Heart Disease Guidelines. JACC 2014;63:e57-185

1. STS Adult Cardiac Database - 2010 Harvest, Isolated AVR. 2. JACC. 2007;50(20):2018-19. 3. Europ Heart J. 2003;24:1231-43. 4. Circ. 2005;111:3290-5. 5. J of Heart Valve Dz. 2006;15:312-321. 6. Lancet. 2006;368:1005-11. 7. JACC. 1993;21(5):1220-25. 8. JAMA 2013;310(19):2069-2077. 9. Medtronic data

2014 ACC/AHA: Which Valve?

ACC/AHA Valvular Heart Disease Guidelines. JACC 2014;63:e57-185

TAVR - Game Changer!

Trans-femoral TAVR should be considered as the first-line therapy for high risk patients with severe aortic stenosis.

Waksman and Pichard. JACC 2015;66:122-4.

TAVR and Clinical Practice

In Germany

NEJM 2016;373:2438-47

Aortic Stenosis in 2016

