Tailored Volume Resuscitation in the Critically III is Achievable

Heath E Latham, MD Associate Professor Fellowship Program Director Pulmonary and Critical Care

KUBRE

Objectives

- Describe the goal of resuscitation in shock.
- Recognize potential adverse outcomes of over resuscitation of the critically ill.
- Increase awareness of guided volume resuscitation strategies.
- Recognize applications and limitations of bioreactance derived hemodynamic monitoring.
- Recognize applications and limitations of pulse contour analysis derived hemodynamic monitoring.
- Describe potential benefits of volume targeted resuscitation to limit volume overload.

KUGSAG

Clinical Case

- AR is a 72 yo 80 Kg female admitted from a SNF with a 1 day history of altered mental status and fevers. She is hypotensive on presentation with evidence of a UTI from an indwelling foley. She has a history of ischemic cardiomyopathy with an EF of 20% and chronic renal failure with crt of 2.4 She is given two 500mL boluses of fluid and abx in the ED and admitted to the ICU.
- First bolus resulted in 20% improvement in SV
- Second bolus resulted in 8% improvement in SV
- Post fluid vitals: T 39, BP 80/40, HR 95 (NSR), RR 28

KUasse

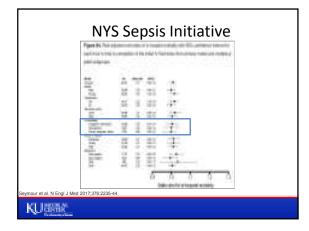
Surviving Sepsis Campaign Guidelines

- 1. Severe Sepsis and Septic Shock are medical emergencies, and treatment and resuscitation should begin immediately. (BPS)
- 2. We recommend that, in the resuscitation from sepsis-induced hypoperfusion, at least 30 mL/Kg of IV crystalloid fluid be given within the first 3 hours

• Strong recommendation, low quality of evidence

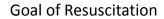
SSC. Crit Care Med. 2017; 45:486-552.

KUasse


History of 30mL/Kg?	
 Rivers—EGDT. NEJM 2001;345:1368-77. Pre-randomization resuscitation 20-30mL/kg ProCESS. NEJM 2014; 370:1683-93. Pre-randomization resuscitation 20 mL/kg 2010 amendment→at least 1L ProMISE NEJM 2015; 372:1301-11 Pre-randomization resuscitation At least 1L ARISE NEJM 2014;371:1495-506. Pre-randomization resuscitation At least 1L 	
KUSSAR	

Trial	Time to randomization (hours)	Fluids received prior to randomization (mL)	Fluids Received prior to randomization (mL/kg)	Between 0 and 6 h after randomization (mL)
Rivers	0.8	NA	NA	3499 ± 2438
ProCESS	3.0	2083 ± 1405	28 ± 21	2279 ± 1881
ARISE	2.7	2591 ± 1331	34.7 ± 20.1	1713 ± 1401
PROMISE	2.5	1790 (1000, 2500)	24*	2022 ± 1271

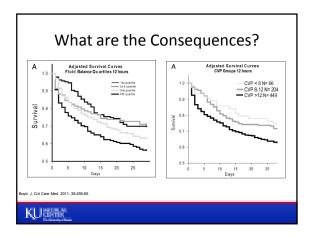
%
56
49
64
57


hide	Al Delaris	1.00	11-111 als	2- Clinic in Bolfish In Frank In
8	11,002	1,331	cjana -	1,010
A COLOR				
All in Applitations tails, a 693 96% O	\$941,0953	040 (173) (163-164)	4450.875 (172-824)	848-048 (001-060)
and introducerously	22.000 000	PH10709 (100-100)	444-03809	#1922
20-d in templation shally	900(11)	888 (18.7) (18.7–1833)	410-0000 (188-1880)	126(21.0) (107-22.0)
KU LDUO CO atributing n= 5,1862 (025 C)	108	10.0 (0.0 - 112)	100-(58-103)	HT(BO-DD)
Hopfs/LOS M2-08% C0	14.8	100030-000	101024-408	195084-9970
Managementings (and the intervence)" (NEI (1999) C.L.A.	6,951(197)	(25.0) (22.3-01.0) 3,000	(00-00) (198	84 (12-04) (49)

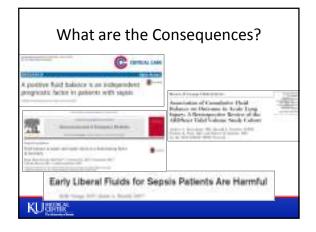
	Tana ta Fisial	1014151	hadaa Fiya Yahama		
Photograph	laine dan Sen dan 15	mailana	Sciencelles Note Office Co	ondone	
Hopki mitally					
Head failure	000(001-020)	0.10	1.01 (000-1.03)	080	
Read failure	0854082-185	158	000-001-100	081	
Meterical weblater					
Head Salar	G8H(3H-128)	0.75	101(000-108)	088	
Panel failure	050(055-105)	107	000/001-108	080	

eisman et al. Crit Care Med. 2017: 45(10)

-	-		0.09 m	2 a la forma a la forma de la Forma de la forma de la
Constructions in Society (c)	NO.	pun in	OPTIM:	ownie
Dates for the Western.	11110	101111	11179-	11/10
Chat, by to a ball it for the	110010-0	00110	100.00	- anno a
5-120-04, Ag. = 196 (5-1909, Ag. = 196 - 30-9, Ag. = 196	RUTH CHINE RUTH (MAIN AAND DRUT	10111000	101100/T	1001110 001110

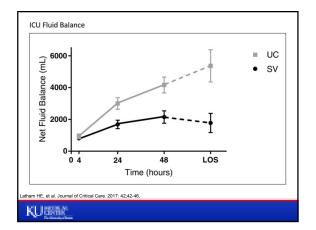

- Achieve Adequate Perfusion Pressure
 - MAP > 65 mmHg
 - Volume Replacement
 - Vasopressors
 - Inotropic
- Improve Microcirculatory Flow
 - Rapidly treat underlying cause of shock
- Limit Tissue Edema

KUgane


What's the Goal of Fluid Resuscitation?

- Improve Stroke Volume/Cardiac Output
- Fluid Responsiveness in Severe Sepsis/Septic Shock?
 Approx 50%
 - Marik, et al. Ann Crit Care. 2011; 1:1
 - Marik, et al. Br J Anaesth. 2014; 112:620-22
 - Cavallaro et al. Inten Care Med. 2010; 36:1475-83
 - Latham et al. J Crit Care. 2017; 42:42-46

KUBSS


Other Volume Sensitive Outcomes? Retrospective Chart Review Medical ICU Severe Sepsis/Septic Shock

- April 2014-September 2014
 - Usual Care (91) vs SV Guided Resuscitation (100)
- Hypothesis: Guided Resuscitation < Fluid

atham HE, et al. Journal of Critical Care. 2017: 42;42-46.

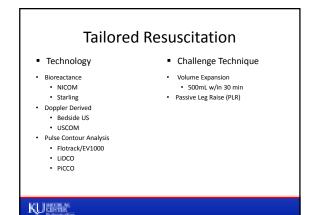
KUSSSe

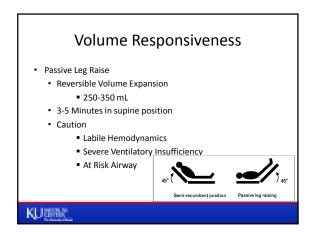
	re-product (1)	Field and	P-Giller-
Deficiency suffers Network (so: Add. y Constant (so: N) control (so: So: address (so: So: address (so: So: point, citerationage)	100 2010 2010 2011 2011	81 (0.00) 10,02 + 1+0	865 100 107
1 Yes tabuya ang ang ang ang ang ang ang ang ang an	-		
 be storpercent? Advect for put-a builtings be scorpercent) 	-		
L ME WARRANT L	100000-0001		
Lotan ore challings	38.4		1000 C
Advant patient	14	192.	-9.02
Address BD*	46	112300	0.000
Avoid disabilities?	16	04. 100	6.001

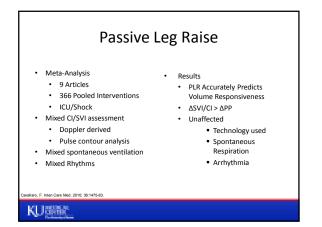
Other Volume Sensitive Outcomes?

Secondary Outcomes

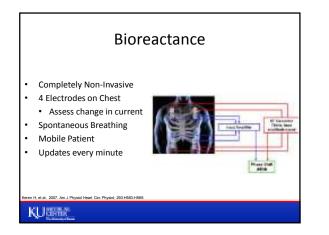
- Mortality: 21% vs 20%ICU LOS:
- 6 vs 9 Days (p = 0.03)
- Mechanical Ventilation
- 29% vs 57% (p = 0.001)
 MV Days: 6.3 vs 6.7 (p = 0.76)
- Vasopressors
 48% vs 57% (p = 0.25)
 Duration:

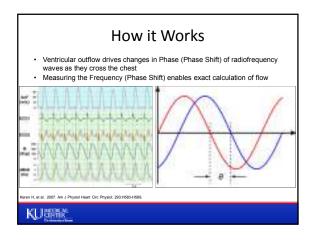

Secondary Outcomes

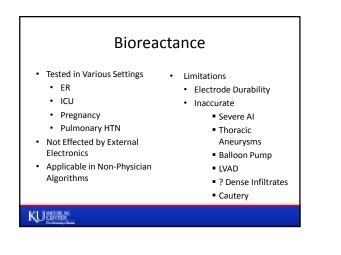

- Duration:
 32 vs 65 hrs (p = 0.001)
- Hemodialysis
 6% vs 19% (p = 0.01)

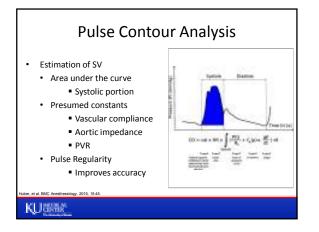

atham HE, et al. Journal of Critical Care. 2017; 42:42-46.

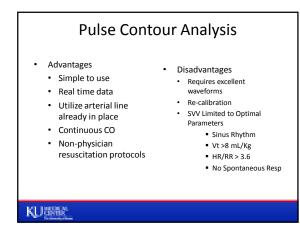
Outcome	Results	Confidence intervals	p-Value
Net-fluid balance - 4 h	- 360.91 mL	-727.16 to -5.340	0.053
Net-fluid balance - 24 h	- 1191.95 mL	-2150.96 to -632.95	<0.0001
Net-fluid balance - 48 h	- 1485.26 mL	-2406.60 to -473.92	0.004
Net-fluid balance - ICU LOS	-2779.17 mL	-4686.48 to -871.86	0.005
In-hospital mortality	OR 0.58	0.21-1.47	0.25
ICU LOS - survivors	-2.55 days	-4.98 to -0.12	D.D4D
Mechanically ventilated	OR 0.34	0.15-0.90	0.01
Ventilator days	-2.15 days	-5.24-0.97	0.17
Vasopressor initiated	OR 0.57	0.26-1.24	0.15
Vasopressor duration	-27.94 h	-51.16 to -4.74	0.02
Acute dialysis initiated ²	OR 1.11	0.05-15.74	0.94






		Boluses	% Resp	AUC
		15		
1 SROC Curve SE(07)+0,0176		22	45	0.95
0.9		71	52	0.96
0.8		24	54	0.96
0.7		24	54	
Romati i and a second s		34	50	0.89
		34	50	0.89
0.3		102	46	0.89
0.2		34	68	0.94
		30	67	0.96
0 0.2 0.4 0.5 0.8 1 1-specificity		30	67	0.92
		34	41	0.94
aro. F. Inten Care Med. 2010: 36:1475-83.	Overall	366	52.9	0.95





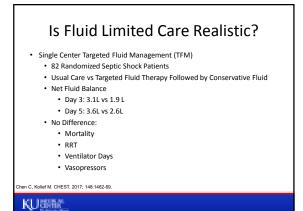
10

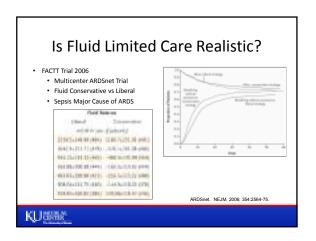
Doppler Derived Stroke Volume

- Bedside US with DopplerEchocardiography
 - Peripheral artery Doppler
- Esophageal Doppler
- USCOM Device

KUBRE

Bedside Ultrasound


- Advantage of US in Shock
 - Assess Cause of Shock
 - Cardiac
 - Pulmonary
 - Septic
 - Assess Volume Responsiveness
 - Assess Therapeutic Result


KUgana

Bedside Ultrasound

- Disadvantage of US in Shock
 - Competence of User
 - Training* in bedside ultrasound
 - Training* in doppler-based measurements
 - Inter/Intra-observer Variability
 - How Many Devices Are Needed
 - No Form of Continuous Measurement
 - Nursing can't monitor change in hemodynamics

KUSSSE

Conclusion

- Guidelines Serve to Limit Care Variation
 30mL/Kg = Low Level of Evidence
- Mounting Evidence of Potential Harm From Excess Volume
 Mortality
 - Secondary Outcomes
- Technology is Available for SV Guided Resuscitation
- Prospective RCT Are Needed to Further Assess the 30mL/Kg

KUGSSE