F.I.R.E Up Your Rapid Response Team:
Non-Invasive Technologies and the Next Era of Rapid Response

Michael Blomquist RN, CCRN
Akiko Kubo, RN, BSN, CCRN
Mindy Stites MSN, APRN, ACCNS-AG, CCNS, ACNS-BC, CCRN

The History of Rapid Response

Implementation of a Rapid Response Team Decreases Cardiac Arrest Outside of the Intensive Care Unit

Introduction and Evolution of Rapid Response Team (RRT)
- An additional trigger
- Non-invasive tools for determining higher level of care
- What patient populations do we serve?
- RRT's evolution and the next step in patient care
- Nurse Driven
Case Study 65 y.o. female

RRT Reason for Call: Hypotension, Mental Status Changes

Past Medical History:
• ESRD-HD Dependent
• Hypertension
• Personal history of stroke
• CAD
• Myocardial Infarction
• Thyroid disease
• Anemia
• Hemodialysis dependence
• Hypertension
• Personal history of stroke
• CAD
• Myocardial Infarction
• Thyroid disease
• Anemia
• History of atrial and ventricular arrhythmias
• Left ventricular hypertrophy
• SVC obstruction
• Embolism and thrombosis of unspecified artery

RRT Reason for Call:
Hypotension, Mental Status

Would You Initiate Fluid Resuscitation on this Patient?

RRT Arrives to the bedside

What did we know:
– 65 y/o female w/ PMH of renal cell carcinoma s/p L renal
nephrectomy in 2/14, hyperparathyroidism,
hypercalcemia, CAD, MI, HTN and stroke presents w/ AV
fistula thrombosis after IR declotting on 11/25.
– Recent dialysis the day prior for 2 hours and stopped d/t
hypotension with a Hgb 6.1 gm/dl
– Lactic Acid 12mmol/L
– VS: BP 87/40, HR 88, RR 16, Temp. 36.5 C, 98% on RA
Fluid Resuscitation - What We Know

- About half of hemodynamically unstable critically ill patients will respond to fluid (Marik, 2013; Michard & Teboul, 2002).
- Volume overload in the critically ill patient is associated with increased length of stay and mortality (Michard, 2002; Teboul, 2002).
- Early fluid resuscitation is associated with improved outcomes, while late fluid resuscitation is associated with increased morbidity and mortality (Murphy, 2009; Warndorff, 2011; Westphal, 2013; Rivers, 2001).
- Clinical indicators of hypovolemia are often inaccurate, confounding, or late signs (Fortes, 2014).

Frank-Starling’s Law

Preload Dependent

Preload Independent

Functional Hemodynamics

Functional Hemodynamic measures analyze the patient's response to an intervention. A reversible fluid challenge (e.g., PLR) or 330-500ml IVF bolus is given and response is assessed over the next 5-10 minutes. An increase of SV, CO, RVEDVI, or FTc of 10% or more indicates fluid responsiveness.
Passive Leg Raising
• Involves the reversible autotransfusion of the blood from the dependent lower extremity vessels to the vena cava to assess for improvement in stroke volume/cardiac output
• Extremely well validated in the literature with an average sensitivity and specificity of 80-85% (Boulain, 2002; Monnet, 2006; Lafarenchere, 2006; Lamia, 2007; Maizel, 2007; Caille, 2007)
• Requires some measure of continuous cardiac output or stroke volume, or dynamic indices, in most cases

Non-invasive Bio-Reactance
• Measures the frequency of electrical signals in the thorax
• Changes in aortic blood flow alters electrical signals
• Data for fluid responsiveness is excellent (Dunham 2012, Raval 2008, Benomar 2010, Fagnoul 2012, Marik 2013)
• More studies are needed for pressors/myocardial depression states

How does bio-reactance work?
• Ventricular outflow drives changes in Phase (Phase Shift) of radiofrequency waves as they cross the chest
• Measuring the Phase Shift (Frequency) enables exact calculation of flow
• An electric current of known frequency is applied across the thorax between the outer pair of sensors
• A signal is recorded between the inner pair of sensors
• Change in phase of the frequency is recorded and the signal translated to flow (similar to Doppler concept)
Case Study: 65yo female with complicated history

Bioreactance results: 250ml bolus
Fluid Bolus Challenge: No, Passive Leg Raise: Yes Time started: 1133

<table>
<thead>
<tr>
<th></th>
<th>CO</th>
<th>CI</th>
<th>HR</th>
<th>NIBP</th>
<th>MAP</th>
<th>TPR</th>
<th>TPRI</th>
<th>SV</th>
<th>SVI</th>
<th>SVV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>2.2</td>
<td>87</td>
<td>53</td>
<td>1939</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Challenge</td>
<td>2.3</td>
<td>86</td>
<td>59</td>
<td>2069</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stroke Volume Index Change: 3.9%

Diagnosis: SepticShock

- Complicated with ESRD and history of stent placement and MI
- Started on CRRT and eventually levophed. No additional fluids given.
- Repeat bioreactance numbers also determined non-fluid responsiveness when admitted to ICU.
Non-Invasive Hemodynamics and RRT at The University of Kansas Hospital

Fluid Resuscitation in Symptomatic Hypotension:

- Obtain baseline hemodynamic values from noninvasive bioreactance monitor, if available.
- Administer 500 mL of IV NS or LR over 5 to 10 minutes, and evaluate change in stroke volume index (SVI) (≥10% increase indicates fluid responsiveness).
- If patient tolerance of fluid bolus is a concern, consider passive leg raise (PLR) test to assess fluid responsiveness prior to administering initial bolus. Repeat bolus X 3 if patient remains fluid responsive. Refer to Assessment of Fluid Responsiveness - TUKH Procedure.
- If bioreactance monitor not available, administer fluid boluses as above and monitor for improvement in blood pressure.

Implementation

• Nursing and Physician Education
 – Technical aspects
 – Principles of fluid responsiveness
 – Inaccuracy of clinical findings
• How to address FR diagnosis when fluid resuscitation has already begun
• At risk populations

Case Study 2: 62 yo female

- 62 y.o. female with PMH of metastatic mucinous adenocarcinoma of appendix, s/p multiple abdominal surgeries, complicated by abscesses, resecting of colostomy
- RRT trigger: Hypotension
- 6L NS given prior to arrival
- Substantial amount of output via colostomy
Subsequent readings

- **1610:** Passive leg raise completed after 2nd 1000 mL bolus of NS (1st and 2nd 1000 mL bolus initiated during rapid response). SVI change of 12.3%. Orders for 3rd 1000 mL bolus.
- **1900:** PLR completed again with SVI change of 11%. Orders for an additional 1000 mL NS.
- Prior to 1900 an SVI of 2.4% obtained?

24 hour Intake and Output

<table>
<thead>
<tr>
<th></th>
<th>mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake</td>
<td>9072.31</td>
</tr>
<tr>
<td>Output</td>
<td>6650</td>
</tr>
<tr>
<td>Net</td>
<td>2422.31</td>
</tr>
</tbody>
</table>
RRT and Bioreactance Conclusions

- Allows for evidence-based fluid resuscitation practices, even on the floor
- Assists with a quicker determination of need to transfer to higher level of care
- AKIKO-We need hypotension data here.

CAPNOGRAPHY MONITORING AND RAPID RESPONSE

Case Study 4: 35yo male

- Admitted for Anterior Posterior L4-S1 fusion
- Fentanyl PCA for pain initially, switched to morphine PCA after reports of poor pain control

<table>
<thead>
<tr>
<th>Assessment Time</th>
<th>HR (bpm)</th>
<th>RR (breaths/min)</th>
<th>SpO2 (%)</th>
<th>POSS Score</th>
<th>Pain Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>0930</td>
<td>90</td>
<td>28</td>
<td>98</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>1130</td>
<td>72</td>
<td>24</td>
<td>98</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>1230</td>
<td>74</td>
<td>18</td>
<td>98</td>
<td>Sleeping</td>
<td>Sleeping</td>
</tr>
</tbody>
</table>

Case Study 4: 35yo male

- RRT called at 1300 after pt found unresponsive by Nurse’s Aid
- Pt being assisted with ventilation via BVM upon RRT arrival
- Some response to naloxone, 0.04mg x3 doses
- Intubated by anesthesia and transferred to the Surgical ICU

Principles of Capnography Monitoring

- Capnography monitors the amount of carbon dioxide being expelled throughout the respiratory cycle and produces a waveform that provides additional information about the patient’s respiratory, CV and metabolic status.

Phase I - Baseline period of no CO2; end of inhalation
Phase II - Rapid rise in CO2
Phase III - Alveolar plateau
Phase IV - Inhalation

EtCO2 obtained at the peak of Phase III. Provides the highest expired CO2 value during the respiratory cycle.
NORMAL EtCO2 is 35-45mmHg
Why ETCO2? -- I Have my Pulse Ox

- **Pulse Oximetry**
 - Oxygen Saturation
 - Reflects Oxygenation
 - SpO2 changes lag when patient is hypoventilating or apneic. Supplemental oxygen can obscure SpO2 readings

- **Capnography**
 - Carbon Dioxide
 - Reflects Ventilation
 - Hypoventilation/Apnea detected immediately

Risk Factors for Opioid-Induced Respiratory Depression

- High-risk populations
 - Obese
 - Obstructive sleep apnea and/or chronic pulmonary disease
 - Increasing age
 - Impaired renal/hepatic function
 - Multiple comorbidities
 - Neurologic disorders, eg, multiple sclerosis, Guillain-Barre
 - PCA
 - Continuous opioid infusions
 - Receiving multiple opioids or concurrent sedating medications

Capnography at The University of Kansas Hospital

- 4 patient populations
 - All patients receiving patient controlled analgesia
 - All patients receiving procedural sedation (ASA ref)
 - All patients undergoing cardiopulmonary resuscitation
 - All patients receiving mechanical ventilation

- Nurses and physicians may initiate ETCO2 monitoring in any other at risk patients as requested
- Portable ETCO2 monitors are carried by the rapid response team and respiratory therapists
Case Study 4: 65 yo female

- S/P R Total Knee Replacement
- PMH
 - Chronic pain requiring long term opioids and adjuncts
 - Hypertension
 - Obesity
- Fentanyl PCA and gabapentin ordered in addition to home medications for postoperative pain management

<table>
<thead>
<tr>
<th>Time</th>
<th>Arrived</th>
<th>HR</th>
<th>RR</th>
<th>SpO2</th>
<th>POSS</th>
<th>BP</th>
<th>Pain</th>
<th>Nursing Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1345</td>
<td></td>
<td></td>
<td></td>
<td>94%</td>
<td>2</td>
<td></td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td></td>
<td></td>
<td></td>
<td>93%</td>
<td>2</td>
<td></td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>1525</td>
<td></td>
<td></td>
<td></td>
<td>94%</td>
<td>3</td>
<td></td>
<td>97</td>
<td></td>
</tr>
</tbody>
</table>

Nursing Actions
- PCA bolus given
Other Uses for Capnography in Rapid Response

Deadspace ventilation resulting in a widened PaCO2-EtCO2 gradient

Anderson & Breen, 2004

Utilization of the PaCO2-EtCO2 Gradient in Practice

- As an indicator of alveolar dead space
 - PaCO2-EtCO2 gradient is an unbiased and precise indicator of Vd/Vt

Kar Kurt et al, Am J Em Med, 2010
Utilization of the PaCO2-EtCO2 Gradient in Practice

- Monitoring response to thrombolytic therapy in PE

Wiegand et al. CCM; 2000:28(11)

Assessment of fluid responsiveness in hemodynamic instability

Young et al Cardiothoracic and Vasc Anes. 2012

EtCO2 as an indicator of airway obstruction/bronchoconstriction

- Indicated by an increasing slope of Phase III, AKA the “shark fin” waveform

Capnography Conclusions

• Capnography monitoring in high risk patients receiving opioids has reduced our incidence of rapid response calls associated with respiratory depression
• Several pulmonary embolisms have been diagnosed with the use of EtCO2
• We need a better system to triage high risk patients for use of EtCO2

Other Non-Invasive Technologies

• Obstructive Sleep Apnea Patients
 – Respiratory Acoustic Monitoring (RAM)
 – Capnography monitoring with positive airway pressure
• Non-Invasive Hemoglobin Monitoring
• Pleth Variability Index
• Volume Clamp Stroke Volume Monitor
• Tissue oxygenation sensors

Conclusion

• The next era of Rapid Response will focus on prevention of complications!
• Further studies investigating the outcome of non-invasive technologies are needed
• Attack one population at a time for biggest impact.
Contact information

• Michael Blomquist: mblomquist@kumc.edu
• Mindy Stites: mstites@kumc.edu
• Akiko Kubo: akubo@kumc.edu

References

References

- ASA Standards for Basic Anesthetic Monitoring, Committee of Origin: Standards and Practice Parameters (Approved by the ASA House of Delegates on October 21, 1986, and last amended on October 20, 2010 with an effective date on July 1, 2011)
References

